Residual Stress Distribution and Microstructure at a Laser Spot of AISI 304 Stainless Steel Subjected to Different Laser Shock Peening Impacts
نویسندگان
چکیده
The effects of different laser shock peening (LSP) impacts on the three-dimensional displayed distributions of surface and in-depth residual stress at a laser spot of AISI 304 stainless steel were investigated by X-ray diffraction technology with the sin2φ method and MATLAB 2010a software. Microstructural evolution in the top surface subjected to multiple LSP impacts was presented by means of cross-sectional optical microscopy (OM) and transmission electron microscopy (TEM) observations. Experimental results and analysis indicated that residual stress distribution and microstructure at a laser spot depended strongly on the number of multiple LSP impacts, and refined grain and ultra-high strain rate play an important role in the improvement of compressive residual stress of AISI 304 stainless steel. The analysis of treatment of the extended surface was presented to obtain uniform surface properties on the top surface of AISI 304 stainless steel.
منابع مشابه
Engineering the residual stress state and microstructure of stainless steel with mechanical surface treatments
Four mechanical surface treatments have been considered for the application to austenitic stainless steel structures. Shot peening (SP), laser shock peening (LSP), ultrasonic impact treatment (UIT) and water jet cavitation peening (WJCP), also known as cavitation shotless peening (CSP), have been applied to 8 mm thick Type 304 austenitic stainless steel coupons. This study considers the merits ...
متن کاملMassive parallel laser shock peening: Simulation, analysis, and validation
Laser shock peening (LSP) is a transient process with laser pulse duration time on the order of 10 ns, real time in situ measurement of laser/material interaction is very challenging. LSP is usually performed in a massively parallel mode to induce uniform compressive residual stress across the entire surface of the workpiece. The purpose of this paper is to investigate the effects of parallel m...
متن کاملFatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening
Warm laser shock peening (WLSP) is a thermomechanical treatment technique combining the advantages of laser shock peening and dynamic strain aging (DSA). Through DSA, WLSP of steel increases the dislocation density and stabilizes the dislocation structure by pinning of mobile dislocations by carbon atoms. In addition, WLSP generates nanoscale carbide precipitates through strain-induced precipit...
متن کاملFinite Element Simulation of Nd:YAG laser lap welding of AISI 304 Stainless steel sheets
Laser beam welding (LBW) is one of the most important manufacturing processes used for joining of materials. It is also a remarkably complicated, nonlinear operation involving extremely high temperatures. Since its invention more than two decades ago, laser beam welding has been more of an art than a science. Laser welding of austenitic stainless steel AISI 304 the candidate material of this re...
متن کاملDissimilar laser welding of NiTi shape memory alloy to austenitic stainless steel archwires
In this research, dissimilar welding of NiTi shape memory alloy to AISI 304 austenitic stainless steel Archwires was investigated. For this purpose, common straight orthodontic archwire with rectangular cross-section and dimensions of (0.635 × 0.432 mm) were selected and the laser welding technique was used to connect the wires. The microstructure, chemical composition and phasesin the weld zon...
متن کامل